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there will be errors, do we need to care?

e |
« Keynote: “Failure, Resilience, Opportunity and Innovation”
John Daly, Department of Defense

« How will HPC continue to provide insight into the nation’s most
important and challenging problems using computers that fail
regularly and even give wrong answers? Resilience is not about
making all of the errors go away. On the contrary, systems
intended to run without errors often fail in the most catastrophic
ways. Resilience is about understanding how systems fail and
creating applications that can fail their way to success.

e ...S0, should we really care about failure?
 Is there an algorithm that can tell us whether we should care?

« Can we use this algorithm to redesign our calculations so that
we needn’t worry about failure?



the challenge: resilience at the exascale

« It's expected failure will occur as a part of normal operation.
— [I'll focus on “bad data”, but in many cases I'll generalize to “failure”

« What algorithmic changes can enable resilience at exascale?

— conjecture: an exascale system should be driven by statistics,
and utilize redundancy where failure is expected to have a sizable impact

— robustness against failure over the need to restart

— programming models for dynamic flexibility in execution
— asynchronous parallel and stochastic operation

— integrated statistical forecasting and metric evaluation

« How can statistics play a huge role in resiliency at exascale?
— identifying and filtering out errors (e.g. outliers that point to ‘bad data’)
— statistical sampling (for known distributions)
— statistical estimators/validators for system/algorithm behavior
— integrated driver for algorithmic robustness against failure



resilience and the state machine
7

« conjecture: if everything, including data, has it's state captured
by the system’s state machine, any form of failure can be
mitigated (or at least recovered from).

— all state is captured in objects, including data
— programming models are used to provide flexible dynamic execution

« This design is used by several Tier-1 banks for their global
algorithmic trading and market risk systems.
— all calculations are managed on an abstract syntactic graph
— all state is captured in objects, and must reside in nodes on the graph
— the graph itself is an object, and can be stored in a database

« Both the data and the code are treated as objects which are
versioned & stored in (memory) instances of NoSQL databases

— previously, data was stored on disk accessed by M’s of processors!



goal: know with certainty what you have

go “back in time” and exactly
reproduce any calculation, and
validate against stored results

regulatory requirement:

financial instruments must
be globally unique (across
every database and every
trader’s laptop)

data is versioned
code is versioned
nothing is deleted
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data history managed through revisioning

6;:;;;::) /data

revl0

/data
revi0

Two clients each get copies of revision 10 of '/data’



data history managed through revisioning

% /data

revl0

/data
revi0

Each client does a calculation that modifies '/data’



data history managed through revisioning

622;;;::> /data

revl |

/data
revl |

The first client writes '/data’ back to the database.
The revision number is increased to 11.



data history managed through revisioning

622;;;::> /data

revl |

prad a merge is needed

/data
revl |

The second client attempts to write '/data’. The
revision numbers don't agree, so the write fails.



global data synchronization is satellite-hub

databases can be unioned
by a path-order mechanism

@ @ databases are synchronized
. 0 % by a daemon process
Satellite - g

—— Read 8 " if data is “corrupted” in one

N L location, sync will detect it
- = % Write s

10



klepto: asynchronous sharing of state

« klepto features:

unified API for caching and archiving
cache-to-archive interaction strategies

— lru, Ifu, mru, random_replace, ...
backends: memory, file, memmap, directory, database, db table
unified API for key encoding / serialization / hashing / encryption

— extensible: leverage pickle, json, dill, codecs, md5, ... you pick
‘ignore’ selected arguments (partial arg caching)

cache interpolation by rounding local memory cache
can leverage SQLAIchemy, numpy internals -
F(X) central archive
: ) -
« planned and in-progress: /\
leverage: hdf, redis, shared memory ?(;()/
more interpolation algorithms —
— kriging, etc...

asynchronous cache-to-archive updates

Ex\VatEx



the time-series problem: market risk
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« big banks w/ large HPC often perform simple linear statistics
— speed trumps accuracy



non-accumulating iterative problems

* time-series problems map well to data stream analytics

* robust statistics can be applied “in streaming mode”, as results
are generated (as opposed to post-mortem)
— O(N) calculations to produce/process data
— O(N) calculations required to identify and reject outliers in data
— calculation of approximate sampling statistics (for known distributions)
— fast and robust statistics is an area of active research

« failure is generally not catastrophic
— each time step is non-accumulating
— the impact of bad data is often contained to a single calculation
— the more data/updates, the more resilient

 is it aresilience strategy to convert algorithms to this type?
— asynchronous parallel: speed + resiliency



accumulating iterative problems

« time-evolution is not as well suited for data streaming analytics

* robust statistics can be applied “in streaming mode”
— tend to be larger than O(N)
— tend to be approximate and fragile
— also an area of active research

 failure may be catastrophic
— each time step is accumulating, so errors are generally compounded
— the impact of bad data is rarely contained to a single calculation
— may be mitigated by adding redundancy and randomness
— may be mitigated by validation against expected model error

* materials modeling is generally a time-evolution problem
— does that mean we cannot convert to robust asynchronous parallel?



time-evolution: a leading question

« global optimization underlies almost every fla\;br of UQ, however is
arguably one of the most limiting factors in predictive science — primarily
because optimization algorithms are iterative (i.e. “serial”).

« can we rethink optimization (and statistics/UQ) to be embarrassingly
parallel?
or maybe better...

 if you had a global optimizer and exascale computing resources, would
you pose statistics/UQ questions differently?

e | have built an optimization framework that is designed to address large-
dimensional and highly-constrained non-convex global optimization and rare-
event UQ problems. A key aspect of how it works is that an optimizer can
dynamically spawn a hierarchy of optimizers to address portions of the
problem, and those nested optimizers can also do the same, and so on.

e One caveat is that each nested optimization must not fail to find it’s target.



nmystic
mystic: scalable constraints operators 2

\

Traditional constraints methods

from mystic.math.measures import mean, spread apply a penalty to the cost
from mystic.constraints import with penalty, with mean when the constraints are
from mystic.constraints import quadratic equality violated

# build a penalty function

@with penalty(quadratic_equality, kwds={'target':5.0}) éif
def penalty(x, target):
return mean(x) - target o . 7 =3 f —p /“\\\////’
M) — , A~ . penalty
C)(l) f(f[') T A ])(I) functions

# define an objective
def cost(x):

return abs(sum(x) - 5.0)
box
# solve using a penalty constraints
from mystic.solvers import fmin _ _ [
x = array([1,2,3,4,5]) Decoupling constraints often
y = fmin(cost, x, penalty=penalty) creates a central

convex optimization

6(F) = f(e(@)
# build a functional constraint

@with mean(5.0)
def constraint(x):

return x |\I’, > = é|\I/ >

data point
& functional
constraints

# solve using constraints
y = fmin(cost, x, constraint=constraint)
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pathos: programming model abstractions

A

# select and configure a basic monitor ° rapid eXploration of SyStem deSign:
from pathos import Monitor . .
evalmon = Monitor () — communication patterns

— parallelism hierarchies
# apply to a user-provided function

@monitored(evalmon) — memory hierarchies
def ldentify(x) — synchronization and scheduling
return X - '
— resilience strategies
# select and configure a parallel map _ system efficiency

from pathos.maps import SlurmMpirunPool
mpi map = SlurmMpirunPool(8)

# evaluate the model in parallel
y = mpi map(identify, range(16))

map provides batch
processing on an potentially
distributed or parallel service

# select and configure a parallel map
from pathos.maps import IpcPool
ipc map = IpcPool(2, servers=['foo.caltech.edu'])

# evaluate the model in parallel

y = ipc map(identify, range(16))
typically 80-90% as efficient as
hand-tuned parallel code




asynchronous map: speed and robustness

« blocking map is fragile and prone to failure
« ...so decouple the launch and termination of parallel map

« utilize a stop condition for when results are “good enough”
— simple case: 75% of the results have returned
— better case: use statistics to determine if “good enough”

“statistics”
P[X<a]ze 75%

N reduces time per iteration
without loss in accuracy

 note: we can still collect and archive all launched runs

— blocking time to the next iteration can be greatly reduced ,,
— a “condition” removes requirement all runs complete ExViatEx



scalability with asynchronous parallelism

* leverage asynchronous parallel computing in optimization

— optimizers have and can save state (to file or database archive), have
streaming diagnostic monitors

— optimizers are serializable and asynchronous (thus are non-blocking
parallel distributed)

— has slots for parallel maps on the objective, constraints, iteration, and the
solver itself (for parallel ensemble and nested solvers)

— has memory caching and transparent archiving

— dynamic optimization strategies, compound termination conditions,
speed-up with dimensional collapse

— optimizers are event-based, can react to changing constraints & objective

« constraints operators enable scalable nonlinear optimization

— apply constraints as an "operator” | | ¥/ > = ¢&|¥ > @(j’) — f(((;z'))
— almost embarrassingly parallel

— constraints solvers are dynamically launched by a governing optimizer
— has been used to solve problems with 1000's of nonlinear constraints



mystic: massively-parallel optimizers &

% WWWLC/

\

# the function to be minimized and the bounds
from mystic.models import rosen as my model
b = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]

# get monitor and termination condition objects
from mystic.monitors import LoggingMonitor

stepmon = LoggingMonitor(1l, 'log.txt')

from mystic.termination import ChangeOverGeneration
COG = ChangeOverGeneration()

# select the parallel launch configuration
from pyina.launchers import TorqueMpi
my map = TorqueMpi('25:ppn=8"').map

# instantiate and configure the nested solver

from mystic.solvers import PowellDirectionalSolver
my solver = PowellDirectionalSolver(len(lb))

my solver.SetStrictRanges(1lb, ub)

my solver.SetEvaluationLimits(1000)

# instantiate and configure the outer solver
from mystic.solvers import BuckshotSolver
solver = BuckshotSolver(len(lb), 200)
solver.SetRandomInitialPoints(1lb, ub)
solver.SetGenerationMonitor (stepmon)
solver.SetNestedSolver (my_ solver)
solver.SetSolverMap(my map)

solver.Solve(my model, COG)

# obtain the solution

solution = solver.bestSolution

optimizers can be set to search for minima,
maxima, saddle, and other inflection points

with enough optimizers, we get a global map
of the potential surface in a single shot

— operators can spawn nested
optimizations to solve constraints




example: degeneracy in structure solution

* Solving a 1D proxy problem with multiple degenerate minima, finding the number of such minima.
 Constructed from 3 sets of Gaussians which may be mixed with different weights.

— Step 1: pick a point on the ternary source diagram

— Step 2: find the degeneracy for that version of the target function

— Step 3: use downhill method to choose a new point. Goal is to find point of lowest degeneracy

— Step 4: repeat many times, try different highly parallel searches

* Problem is hard for solvers because there are large flat regions of the surface.
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example: ensemble global search

Single Buckshot Powell
search for all minima

Six-iteration Buckshot
Powell search for all

minima.
dude@hilbert>$ python global_search.py
Cachelnfo(hit=12, miss=13, load=0, maxsize=None, size=13)
Two-iteration Buckshot Cachelnfo(hit=18, miss=7, load=0, maxsize=None, size=20)
Powell search for all minima. Cachelnfo(hit=22, miss=3, load=0, maxsize=None, size=23)

Cachelnfo(hit=24, miss=1, load=0, maxsize=None, size=24)
Cachelnfo(hit=25, miss=0, load=0, maxsize=None, size=24)
Cachelnfo(hit=25, miss=0, load=0, maxsize=None, size=24)
min: 0.0 (count=1)

= pts: 17 (values=6, size=24)

Interpolate points to build a
surrogate.

“cache” in this case is an abstraction
on storage. “load” is local memory
cache, while “hit” is an archive hit.
“miss” is a new point. Results shown
are for when configured for direct

dude@hilbert>$ python global_search.py

Cachelnfo(hit=17, miss=8, load=0, maxsize=None, size=8)
Cachelnfo(hit=24, miss=1, load=0, maxsize=None, size=9)
Cachelnfo(hit=25, miss=0, load=0, maxsize=None, size=9)
Cachelnfo(hit=25, miss=0, load=0, maxsize=None, size=9) .. . .
min: -70.8861291838 (count=1) connectivity with archival database.

pts: 9 (values=8, size=9)




example: building the optimal surrogate

Can we build a surrogate for a n-dimensional
surface, where we can optimally replicate the
original function’s behavior?

You can be smart about it, or use
brute force. Let’s use brute force.



example: building the optimal surrogate

Standard solution: pick a grid
density, and drop points on the grid. Can we do better?
Then interpolate.



example: building the optimal surrogate

Better solution: pick points at all of

the critical points for the unknown

surface. Then interpolate.
Need to use an optimizer capable of
reliably finding all critical points.
Luckily, we have one.

Turning points not shown.

As a “bonus” you also get the
points from each function
evaluation in the optimization.



can catastrophic failure be a good thing?

Magitude

phase

Magnitude
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Output Signal

— N. DeBardeleben LANL LA-UR-12-20261

one flipped bitin a FFT can
have catastrophic effects

however, catastrophic
failure should be easy
to detect by examining
model error (statistics)

can we leverage model
error to provide resilience?



model error in guided shock simulation
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In shock simulations, we typically construct a model, then
after we simulate we try to determine “misfit” (i.e. model error).
We then readjust parameters, and try again.

What if we had a process to build a shock model that was guaranteed
to satisfy model error constraints everywhere requested?

What if, as a bonus, the process was resilient to catastrophic failure?

Could we also use
some combination of
model error and
asynchronous
parallelism to speed
up the calculation and
make it more robust
against error?

Ahead of each “model-error guided” model
evaluation, we run a burst of “model-error
guided” surrogate model evaluations. We try
to forecast the next coarse model evaluation
point. Also, if the surrogate performs well,
switch to the surrogate.

Could something like this work?



statistics will play a huge role at exascale

« exascale systems should have to operate under failure

 individual components of the system and individual bits of data
should not be trusted... however, the entire system and the data
should be trusted with statistical confidence.

we have to build algorithms that are robust with statistical confidence

* in certain cases, we can measure performance with an
estimator (e.g. a model that produces a projected value):

failure that is governed by a normal (or at least a known) distribution
failure that is not catastrophic (i.e. errors do not compound)

when we have built and validated a statistical estimator for the system
when we can’t do any better

 otherwise we need to determine best and worst case bounds
as well as the average case

the bounds and the average provide a true system performance measure



probability theory versus uncertainty

- subtle: approximations make the problem “solvable”
— however, often remove the ability to predict high-impact rare events

. problem typically reduced to one of probability theory
classic probability theory by Laplace published in 1812
— modern probability theory by Kolmogorov published in 1933
— probability distributions are approximated as a KNOWN
— standard deviations are used to “reintroduce” the UNKNOWN

« how differ from rigorous calculations of risk and uncertainty?
— probability distributions are an UNKNOWN
— unified uncertainty theory by Owhadi published in 2013

« example: picking a red ball from a bag of 100 colored balls
— probability: if 10 balls are red, what’ s the likelihood in picking a red ball?

— uncertainty: if on average 10 balls are red, what’ s the likelihood of picking a red
ball the next time? What’ s the worst case and best case?



why is catastrophic failure hard to predict? 2

\

* hardly anyone solves the "full problem” / standard

— problems are high-dimensional, nonlinear, a‘r‘1d non-Sonvex approximations:
— real-world problems are usually considered “too big™ to —  convexity
solve: too many parameters, too complex, etc... — if the objective is
expensive, use a
« composing reduced problems with valid strong P
approximations is an area of active research surrogate
. . . ) — if data exists, use
— calculations are expensive and require parallel computing a best-fit
— the majority of the effort is often in finding a "best" model surrogate to
o .y . . represent the data
or probability distribution or prior (throwing away
— once a "best" model/distribution is found, prediction and data)_
estimation are separate and often quick calculations - :";:i;;”gﬁf;‘"aa
— iterative and renormalization steps can be used when distribution from
predictions are found to conflict with problem constraints the data,
assuming all
i . . . o ] future data
 typical: use a prior and fix a probability distribution matches the
<t
— sampling off a fixed distribution can only predict rare Sﬁfri'g‘ﬁﬁon /
events that have been observed (to inform the prior)
— can predict average behavior (given enough data), Bayesian inference, machine learning,

MCMC and other standard

however fails to predict high-impact rare events techniques all use this approach.



example: seismic safety assessment £2N

e Problem: Can we certify the seismic safety of a
given structure subjected to earthquake ground
motion, where only the maximum magnitude and
focal distance of the earthquake are known?

e We construct all possible earthquake scenarios

— Random inputs of high-dimensionality (~600)
with a large number of constraints (~1200)

— Inputs are coefficients c; in the transfer
function, and amplitudes X; and durations s; in
the earthquake source function

q
‘ q
s =3 Xesilt) 00 =Y3 it
. i=1
i=1
e Ground acceleration is a convolution of the source
and transfer functions, while dynamics of joint
deflection are governed by
dr

t
Ua(t) = —/ eCawalt=T) ginfwa (t — T)](qz;ﬂ[Tiio(T)) —
0

fio(t) := (v % 5) (1)

W

typical scenarios for resulting

ground acceleration
8

probability of failure as
a function of maximum
groundj;? leration

tl? - . -
oo AT when axial

[6 U e strain occurs
‘fa near truss
s | resonance
’ ‘ 1 modes, failure

1l can occur

a truss structure

Failure occurs when axial strain in
any truss member exceeds the
member yield strain

[Livloo < S

We determine the probability of
non-elastic failure with respect to
the unknown earthquake ground
motion the structure will experience




assumptions have consequences e A

* An admissible set of scenarios can be constructed by
considering the mean power spectrum

i1 is a prob. dist. on ground motions,
and [E, [power spectrum| = sya

Ama = {N

} sma(w) == Cpe“2Mr ——
- W

« The typical approach is to repeatedly sample white noise,
then filter the samples through a given shape function to
generate samples with a "typical” power spectrum

— amounts to a sampling from only one of the possible probability
distributions

— results are dependent on how well the selected probability distribution
applies to all possible scenarios (e.g. are outliers important?)

« This approach builds the "best" model based on past events,
and hopes futures can be predicted explicitly from the past.



the problem is...

 The past is not generally a good predictor of the future

* In general, we have two problem types:
— "best" case is easy to approximate
— seismic safety
— casualty estimates
— "average" case is easy to approximate
— stock market futures
— weather forecasting
— algorithmic performance

« Finding the remaining information is sketchy
— bounds found by standard deviations
— bounds found with monte carlo simulations
— bounds cannot be approximated

Poor approximations built into our statistical
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UQ with unknown probability distributions

* min/max on probability measure
space (not input parameter space)

W' > =2 >=) wlz; >
7

v >
/M
Wwi,Z1 W2, T2
_ 0O O

* mean-constrained optimization
balances weights and positions of
Dirac masses around a critical point

how many points are required? N+1 or less,
where N is the number or constraints.

OUQ is an optimization problem to
find the rigorous bounds on system
behavior

all information is captured as constraints

constraints restrict the set of all possible
solutions (by directly constraining solution
space)

systems with minimal to no experimental
data or unobserved rare events that govern
system behavior

instead of selecting a "best" model or
distribution or prior, we can optimize
over all possible models,
distributions, or priors.

selecting a model or distribution is treated
as an assumption or information (i.e. a
constraint)

our "prior" step becomes one of quantifying
all the knowledge we have about the
problem, and then encoding that
knowledge as constraints




initial basis for a probability distribution... g\
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..collapses candidate scenarios... =
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..and solves for probability of failure
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OUQ: a robust unifying UQ formulation

(g: X > R, u e P(X)) is consistent with
A:= < (g,p)| all given information about the real system (G, P)
(e.g. legacy data, first principles, expert judgement)

@ Optimal bounds on the quantity of interest Ex.p[q(X, G(X))]
(optimal w.r.t. the information encoded in A) are found by

minimizing/maximizing Ex~.,.[q(X, g(X))] over all admissible
scenarios (g, i) € A:

L(A) <Ex~plg(X,G(X))] SU(A),

where £(A) and U(.A) are defined by the minimization and
maximization problems

extremes are bound ,C A = 1nf E ~ - X X .,
form of constaints A= iea X nldl X 9(X)
formulated to handle Z/{(A) .— sup EXN;L Q(X/ g(X)) .

UQ for catastrophic
rare-events (g,u) €A



the math is simple, but infinite dimensional '

\

We formulate statistical quantities as optimizations,
where x are physical values, A are constants that are

model-dependent, u is a probability distribution, and A
is all the information we have about the system.

model error |F(z)— F'(z,)) statistical error Hﬂ[\!"(.r) — F'(z,)\) }

model uncertainty P||F(z) - F'(z,))| >a| likelihood P[|F(z)- F'(z,\)| >a| <e

bound on statistical error su;le,,“F(.r) - F'(‘.z'.)\)‘g] enables rigorous calculation of
HEA

_ oo , bounds on system behavior
optimal statistical estimator ifsupE, [, F(z) - F'(x, A),z]
F' eA

note the optimal model is the

'¥/—\ most robust (e.g. the bounds

minimally change on system
for admissible scenario (g, v) for the unknown reality (G, P) change)




a simple infinite dimensional problem 7.

You are given one pound of playdoh.
How much mass can you put above a while
keeping the seesaw balanced around m?

1 —p p
0 A a 1
m max p
the answer .
subject to ap < m

T
the question sup ,U[X > a} —
peA a

A= {n € M([0,1)) | E,[X] < m)




quantification in microstructure modeling

real system

> QO (quantity of interest)

model

> predicted QOI

* motivating questions:
— How "good" is my model?
— How can | best improve my model?

— Given the uncertainty on microstructure does it
make sense to perform an expensive simulation?

— lIs there a "best" representation of the microstructure?
How can | find it? velocity

— Can I turn the problem of finding the best model given
computational constraints and available information
into an algorithm?

failu




target: UQ for shock in microstructures

@ @9 (t,v(¢)) (t7 fU’@)) strength models in shock waves
Vo curve

curve

we want to estimate we can compute
Upy = > Pt
Sl | - t,v'(t
(t7 U(?f)) » \ | >( , U ( >> , \
| ..~ Shock Simulation model error ‘UHel(x) N UHGI(CB’ )
UHol ~ Shock Experiment

>U£{el e / 2]
statistical error EUUHeI(x> —vHel(x,A)’

model uncertainty P[‘vHel(:U) — Ve (T, /\)| > a} failure PUUHd(iU) — vy (T, >\)| > a}g £

We have incomplete information on the distribution
of microstructure and chemical composition

We know vg, h,r only up to some tolerance | Volume fractions of iron, carbon, ...

Average grain orientation and size,correlation between
h € [hmin, b E[h] = m, Var(h) <o 56 & ’
< [ iy max]’ [ ] ’ ( ) — grain orientations as a function of distance, ...

We have incomplete information on the distribution of x

. T / 2
optimal bound on the statistical error  SUD - 4 Eu ‘fUHel(aZ) — fUHel(x, )\)‘



used for model-parameter sensitivity a9

\

sensitivity in synaptic reaction networks | dynamic discovery of
. regions of criticality
. \/ RS R | o e
Ag Lo RN . e | e
? & Kl o ] [| o
@ K™ wcamid '{:“‘“" \'?n-numrg Ken
o R el K ceaman
o > - ' M\ /kbm ™~ K-(a@N
- K-CAM)NZC‘\W‘;L M“x/a
’”e J @ - . left: schematic of major diamet.ers help zero-in H
o Cabindi Co. Caca €A Comt APAR AR M players in the synaptic on regions of parameter .
reaction network space wh'ere parameters \
have desired impact
large-scale calculations of risk
- Cub Carl LA :
__ et sensitivity of thermodynamic peak-
(incl. (time, trade, path)
instrument + . . .
ausion el broadening to bond anharmonicity
Scenario Generator )
(:ﬁﬁr::f:smmue, Cube 2 - y Crystal structure of monoclinic
= sttt mansee) ‘2‘2;" '\'\. zirconia, with oxygen in red and
\ zirconium in blue.
\
_ e | [T~
diff. mdl) /\.’
. Jradﬂsf‘;M)’ J ?
Scenarios are views on [ Scenario J‘ Scenario J‘—/_ >
cubes (or combinations Request 1 RequestN — i £
of cubes) \ - r %
Deal Back testing B . X L‘n’
eloration \  (regulatory)__ [T & The partial density of statesat g
i r ¢ 295 K calculated by GULP
A trading scenario generator B /"m shows Zr dominates the lower & T‘"Z%: E
creates and launches thousands of L ] energy modes. 0 100 200 30 400 50 60 700 800
simulations on millions of trades. _— e Energy (wavenumbers)
sensitivity = - |[F(x") - F(x)|?




used for probability of system failure ****

CALTECH

probability of elastoplastic failure
strain due to ground acceleration

»—+ Max PoF
<+—_Min PoF

ground acceleration

12 typical scenarios for resulting

under

probability of/failure as
a function of/maximum
ground accgleration

hypervelocity
ballistics
launcher and
measurement
system

Velocity measurement system Barrel Gas-gun

[y / VAR ]l when axial an impact simulation is
fe . V- i strain occurs used to quickly test
| ‘ | near truss materials response
- 0t resonance
‘ modes, failure
a truss structure w w can occur
. | validation of strength models the area of the above hole is
o . P o . . determined by a laser probe
~. ./ me= for hypervelocity impact
°.. -'r /\\ ‘ / - e
hypervelocity launcher 0... ;K’\ /’» .0 P e 2’! ° A feasible set defined by bounds
- = debris cloud 2 N A Von Mises (h, 8,v) € [1.52,2.67] mm
V. ~310km/s ° <<’/ \j -0 15 8 “ yield strength 0.1 51 9.8k
D oremm L \/\ﬂ ] model with x [0, 5] X [ 1,2.8 km/s
AV ‘e 5 osf - velocity = 100 ...and a mean constraint on area
Wi . e — .  Mm/sisshown5s E[H (h,6,v)] € [5.5,7.5] mm?
: ° 05 » after impact.
Schematic of hypervelocity impact for a spherical ' R ‘5I 0
steel projectile fired at a stainless steel plate. .




enables the formulation of better models '

\

We can hypothesize measurements of new information (say, a new constraint on
the median of velocity, or on the angle of impact), and then optimize to see how that
new information would alter the probability of the critical event.

Admissible scenarios, A U(A) Method

Amcp: independence, oscillation and mean < 66.4% | McD. ineq.
constraints (exact response H not given) = 43.7% | Opt. McD.

A:={(f,pu) | f=H and E,[H] € [5.5,7.5]} | "=37.9% ouQ

pi-median velocity num,, oy
AN {(f. 1| _ 9 45 km . s } = 30.0% ouQ
AN{(f ) } ji-median obliquity = ]—”2} "="36.5% ouQ
AN {(f,p)|obliquity = & p-a.s.} "="28.0% ouQ

We keep trying to design possible “experiments” to find the information
set that certifies the system as “safe” (not failing within the given tolerance)



more questions == new objective functions

Can | use OUQ to find if | can use sampling statistics?

« Can | find a suitable reduced-dimensional model?

« Which data points are the “most impactful™?

— after 1 year of hypervelocity impact experiments, post-analysis found that
only 2 of the nearly 50 shots impacted the probability of failure bounds

— better: use the statistics as an guide for where to shoot next

« Formulation of these problems as OUQ questions, under the
mystic framework, is designed to run asynchronously and to be
resilient to failure.

— In many cases, this requires depth 5 optimization problems



when bounds are violated, look for bugs!

in an OUQ calculation of
probability of failure, the
results began violating the
calculated system bounds

subsequent OUQ analysis on
elements of the calculation
discovered a version update to
code for kriging interpolation
came with a new bug

since this error represented a
violation of our assumptions
(information) about the
problem, it led to results that
violated the “worst case”
bounds.

10

old_model

with interpolation bug

new model

without interpolation bug
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This is not in any way a solved problem, and | believe
IS just the opening gambit.
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